King Fahd University of Petroleum & Minerals
College of Computer Science and Engineering
Information and Computer Science Department
ICS 201 - Introduction to Computing II

Spring Semester 2012-2013 (122)
SOLUTION to Major Exam 01
28th February 2013
Time: 120 minutes

Name: StudentID:

This exam consists of four questions. All questions must be answered.

Question# Max Marks Marks Obtained
1 10*2 =20
2 30
3 20
4 30
Total 100

Q. 1 [2*10 = 20 marks] For each of the following statements, write your answer in the space
provided:

Question Ans

Which of the following is the correct way of defining an abstract method:
A. public abstract void myMethod(Object o) {}
B. public abstract void myMethod(Object o); B
C. public void myMethod(Object o) {}
D. public void myMethod(Object o);

Which of the following can be a member of an interface:
A. public static final double MY_PI = 3.1416;
B. private static final double MY_PI = 3.1416; A
C. protected static final double MY_PI = 3.1416;
D static double MY_PI = 22/7;

Which of the following statements will return false

(Assume String x = "201", String y = 102", Object o = new Integer(201))
A. x instanceof String D
B. x instanceof Object
C. x.getClass().equals(y.getClass())
D x.getClass().equals(o.getClass())

Which of the following is not inherited in a derived class from a base class:
A public instance variables
B. private instance variables D
C. public methods
D. private methods

A call to super() in the constructor of the derived class must be

A the first statement in the constructor

B. placed anywhere in the constructor A
C. the last statement in the constructor

D. placed before a call to this() in the constructor

In Java every class is a descendant of the class

A. super

B. Java C
C. Object

D Class

A.

B.
C.
D.

7. When a method in a derived class has a different signature but the same name and return
type from the method in the base class, that mechanism is called
A overloading
B. encapsulation
C. overriding
D. shadowing
8. Given two classes Letter and Alphabet, where Alphabet is a derived class of Letter, which
of the following is illegal statement:
A. Letter x = new Alphabet();
B. Alphabet y = new Letter();
C. Letter x = new Letter();
D. Alphabet y = new Alphabet();
9. If a base class has a method public Object myWork(Object o), then it can be overridden
by which of the following methods:
A. public Object myWork(String x)
B. public String myWork(Object o)
C. public String myWork(String x)
D. public Object myWork()
10. An Anonymous Inner Class has

no constructors

no instance variables
no private methods
no derived methods

Q. 2 [30 marks] Suppose we want to write an application that maintains an inventory of
automobile vehicles of different types. Assume that we have the following inheritance
hierarchy to implement:

Vehicle

Car Bus

The following are the descriptions of these classes:

(a) Vehicle: is an abstract class with the following details:
a. has a private instance variable weight of type double
b. an accessor method for weight
c. an abstract method computeMileage() that is expected to compute and return
the mileage of the vehicle as a double value
d. a method remainingDistance(double fuel) that returns the remaining travel
distance, as the product of the vehicle's mileage and the amount of fuel
remaining (which is given as a parameter)
(b) Car: is a non-abstract class that extends the Vehicle class as follows:
a. has a private instance variable hybrid of type boolean initialized to false
b. aconstructor to initialize the instance variables with values given as parameters
c. the method computeMileage as follows:
1) If the car is a hybrid, then the mileage = 20 * (1000/weight)
i1) If the car is not a hybrid, then the mileage = 6.5 * (1000/weight)
(c) Bus: is a non-abstract class that extends the Vehicle class as follows:
a. has a private instance variable passengers of type int
b. a constructor to initialize the instance variables with values given as parameters
c. the method computeMileage as:
mileage = 10 * (2000/weight) - (passengers * 0.2)
(d) Main: a class with the main method to test the above classes as follows: Define an array
of type Vehicle of size 3 having the following objects:
1) a hybrid Car object, with weight 1600
i1) a non-hybrid Car object, with weight 1400
1i1) a Bus object with weight 2400 and 10 passengers

For each object in the array, print the remaining distance when the remaining fuel amount = 20.

abstract class Vehicle {
private double weight;

// 1. Define an 1initializing constructor to initialize the
// 1instance variable with a value given as a parameter
public Vehicle(double weight) {

this.weight = weight;
}

// 2. Define an accessor method for weight
public double getWeight() {

return weight;
}

// 3. Define an abstract method "computeMileage()" that is expected
// to compute and return the mileage of the vehicle as a double value
public abstract double computeMileage();

// 4. Define a method "remainingDistance(double fuel)" that returns the
// remaining travel distance, as the product of the vehicle's mileage
// and the amount of fuel remaining (which 1is given as a parameter)
public double remainingDistance(double fuel) {

return this.computeMileage() * fuel;
}

}

class Car extends Vehicle {
private boolean hybrid = false; //whether it's a hybrid or not

// 5. Define an 1initializing constructor to initialize the 1instance
// variables with values given as parameters
public Car(double weight, boolean hybrid){
super(weight);
this.hybrid = hybrid;
}

// 6. Define the method "computeMileage" as follows:
// - If the car is a hybrid, then the mileage = 20 * (1000/weight)
// - If the car 1is not a hybrid, then the mileage = 6.5 * (1000/weight)
public double computeMileage() {
if (hybrid)
return 20.0 * (1000 / getWeight());
else
return 6.5 * (1000 / getWeight());

class Bus extends Vehicle {
private int passengers; // number of passengers aboard

// 7. Define an 1initializing constructor to initialize the 1instance
// variables with values given as parameters
public Bus(double weight, int passengers) {
super(weight);
this.passengers = passengers;

// 8. Define the method "computeMileage" as:
// mileage = 10 * (2000/weight) - (passengers * 0.2)
public double computeMileage() {

return 10 * (2000 / getWeight()) - (passengers * 0.2);

}
}

public class VehicleTest {
public static void main(String[] args) {

// 9. Define an array of type Vehicle of size 3 having the following

// objects:

// - a hybrid Car object, with weight 1600

// - a non-hybrid Car object, with weight 14600

// - a Bus object with weight 2400 and 10 passengers

Vehicle[] vehicle = new Vehicle[3];

vehicle[@] = new Car(1600, true);
vehicle[1] = new Car(1400, false);
vehicle[2] = new Bus(2400, 10);

// 10. For each object in the array, print out the remaining distance
// when the remaining fuel amount 1is 20
System.out.println("vehicle[@]: " + vehicle[@].remainingDistance(20));
System.out.println("vehicle[9]: + vehicle[1].remainingDistance(20));
System.out.println("vehicle[9]: + vehicle[2].remainingDistance(20));

}

Q. 3 [20 marks] Consider the following interface:
interface NumberAsString {
public int realPart();
public int fractionalPart();
public boolean isInteger();
public NumberAsString roundedProduct(NumberAsString s2);

}

Design and implement a class DoubleAsString that implements the interface NumberAsString.
The class DoubleAsString should have a string value as the instance variable. The method
realPart() should return the real part of the double precision number represented by the string
value. The method fractionalPart() should return the fractional part of the double precision
number represented by the string value. The method roundedProduct(NumberAsString s2)
should round off the two doubles (this and s2) and return their product. Include a toString()
method also.

You may use the methods Integer.parselnt(String val) and Double.parseDouble(String val).
Do not use any methods from the Math class.

For example the following main method code can be executed in the main class,
DoubleAsString s1 = new DoubleAsString("3.1416");
DoubleAsString s2 = new DoubleAsString("6.52");
DoubleAsString s3 = new DoubleAsString("7000.0");

System.out.println("For "+s1+", real = "+sl.realPart()+", frac =
"+sl1.fractionalPart());

System.out.println("Is s3: "+s3+" an integer? "+s3.isInteger());
System.out.println("Rounded Product of "+sl1l+" and "+s2+" is "
+sl1l.roundedProduct(s2));

The output is as follows:
For 3.1416, real = 3, frac = 1416

Is s3: 7000.0 an integer? true
Rounded Product of 3.1416 and 6.52 is 21

class DoubleAsString implements NumberAsString {
private String number;

public

}

public

}

public

}

public

}

public

}

public

}

DoubleAsString(String x) {
this.number = x;

int realPart() {
return Integer.parseInt(number.substring(®, number.indexOf('.')));

int fractionalPart() {
return Integer.parseInt(number.substring(number.index0f('."') + 1));

boolean isInteger() {
return (fractionalPart() == 0);

NumberAsString roundedProduct(NumberAsString s2) {
int vall, val2, firstDigit;
firstDigit = Integer.parseInt((this.fractionalPart() + "").substring(e, 1));

if(firstDigit < 5)

vall = this.realPart();
else

vall = this.realPart() + 1;

firstDigit = Integer.parseInt((s2.fractionalPart() + "").substring(e, 1));
if(firstDigit < 5)

val2 = s2.realPart();
else

val2 = s2.realPart() + 1;

System.out.println(vall + " "+ val2);
return new DoubleAsString(vall * val2 + "");

String toString() {
return number;

Q. 4 [10+10+10 = 30 marks] What is the output of the following programs:

(a) public class OuterOne {
private int x;

public class InnerOne {
private int y;

public InnerOne(int y) {
this.y = y*y*y;

}

public InnerOne() {
this(2);
X = 6;

}

public void innerMethod() {

System.out.println("Outer x is "+x);

System.out.println("y is "+y);
}
}

public OuterOne(int x) {
this.x = x*x;

}

public void outerMethod() {
System.out.println("x is

}

+ X);

public void makeInner() {
InnerOne anInner = new InnerOne();
anInner.innerMethod();

}

public static void main(String args[]) {

OuterOne o = new OuterOne(3);

OuterOne.InnerOne i = o.new InnerOne(4);

i.innerMethod();
o.outerMethod();
o.makeInner();

Outer x is 9
y is 64

X is 9

Outer x is 6
y is 8

(b)

class Base {
public Base () {
System.out.println("Base Constructor");
}
public void mi() {
m2();
m3();

}
public void m2() {

System.out.println("Base m2");
}
public static void m3() {
System.out.println("Base m3");

}
}

class Child extends Base {
public Child() {
System.out.println("Child Constructor");
}
public void m2() {
System.out.println("Child m2");
}

public static void m3() {
System.out.println("Child m3");

}
}

class Test {
public static void main(String[] args) {

Base b = new Base();
b.ml();
Child c = new Child();
c.ml();
b =c;
b.ml();

Base Constructor

Base m2

Base m3

Base Constructor

Child Constructor
Child m2

Base m3

Child m2

Base m3

10

(c)
class Shoe {
public Shoe() {
this("This is a shoe");
System.out.println("Base Class");
}
public Shoe(String s) {
System.out.println(s);

1}

class TennisShoe extends Shoe {

public TennisShoe(){
this("This is a Tennis Shoe");
System.out.println("Derived Class");

}

public TennisShoe(String s) {
super("Exam 1");
System.out.println(s);

1}

class WhiteTennisShoe extends TennisShoe {
public WhiteTennisShoe(String s) {
System.out.println(s);

1}

class Test {
public static void main(String args[]) {
new WhiteTennisShoe ("A white tennis shoe is created");

1}

Exam 1

This is a Tennis Shoe

Derived Class

A white tennis shoe is created

11

12

